spective definitions. In the Fourier analysis, the lattice strain is a function of the distance L in the crystal. The Fourier analysis strain listed in Table 1 represents the root-mean-squared strain averaged over the dimension of the effective particle size, a value independent of L. The variance strain, also independent of L, is observed to have the magnitude of the Fourier analysis strain at $L \rightarrow 0$, and would be consistently larger than the average Fourier-analysis strain. The integralbreadth strain has been shown (Wagner & Aqua, 1964) to be approximately 25% larger than the Fourier analysis root-mean-squared strain as averaged over the particle size dimension.

Another measure of the lattice strain may be obtained from the variation of the variance with the range. The value of the range $\Delta 2\theta$ over which the peak profile is defined is critical. As Langford & Wilson (1963) have demonstrated, the variance of the peak is properly chosen when the ratio $W(2\theta)/\Delta(2\theta)$ is a constant. To ascertain whether the range used for the Fourier analysis and integral breadth also satisfied the requirements for the variance analysis, the dependence of the variance as the range was investigated. One example is shown in Fig.4 for the 111 reflexion. One notes that points A and B, the values used for the particle size and strain determination, are certainly in the region of constant slope. Using the difference in the intercept values of W_0 for deformed and annealed powders, one can compute the root-mean-square strain (see Langford & Wilson, 1963) using the following equation:

$$\varepsilon = \frac{1}{2} (W_o)^{\frac{1}{2}} \cot \theta \,. \tag{7}$$

For the (111) reflexion the strain $\varepsilon = 1.4 \times 10^{-3}$, a value that agrees with those computed by the other methods.

In summary, one sees that when the proper angular range is chosen the variance, Fourier analysis and integral breadth will each yield values of particle size and strains that are mutually consistent.

The author is grateful to Prof. C. N. J. Wagner for his most helpful discussions during the experimental phase of this work completed at Yale University.

References

- AQUA, E. N. (1964). In *Computers in Metallurgical Engineering*. Ed. Pehlke, R. p. 27. Cleveland: ASM Symposium Series.
- HALDER, N. C. & MITRA, G. B. (1963). Proc. Roy. Soc. A 82, 557.
- KEATING, D. T. (1959). Rev. Sci. Instrum. 30, 725.
- LANGFORD, J. I. & WILSON, A. J. C. (1963). In Crystallography and Crystal Perfection. Ed. Ramachandran, G. N. p. 207. London: Academic Press.
- MCKEEHAN, M. & WARREN, B. E. (1953). J. Appl. Phys. 24, 561.
- MITRA, G. B. (1964). Acta Cryst. 17, 765.
- RACHINGER, W. A. (1948). J. Sci. Instrum. 25, 254.
- RAO, P. R. & ANANTHARAMAN, T. R. (1963). Z. Metallk. 54, 658.
- STOKES, A. R. (1948). Proc. Phys. Soc. Lond. B, 61, 382.
- WAGNER, C. N. J. & AQUA, E. N. (1964). Advanc. X-Ray Anal. 7, 47.
- WARREN, B. E. (1959). Progr. Metal. Phys. 8, 147.
- WARREN, B. E. & AVERBACH, B. L. (1950). J. Appl. Phys. 21, 595.
- WILLIAMSON, G. K. & HALL, W. H. (1953). Acta Metallurg. 1, 22.
- WILSON, A. J. C. (1962a). Nature, Lond. 193, 568.
- WILSON, A. J. C. (1962b). Proc. Phys. Soc. 80, 286.
- WILSON, A. J. C. (1962c). Proc. Phys. Soc. 80, 303.
- WILSON, A. J. C. (1963a). Proc. Phys. Soc. 81, 41.
- WILSON, A. J. C. (1963b). Mathematical Theory of X-Ray Powder Diffractometry. Eindhoven: Phillips.
- WILSON, A. J. C. (1964). In Advanced Methods of Crystallography, Ed. Ramachandran, G. N. p. 221. London: Academic Press.

Acta Cryst. (1966). 20, 563

Structure Cristalline Précise du Sélénite de Magnesium à Six Molécules d'Eau

PAR RAYMOND WEISS, JEAN-PAUL WENDLING ET DANIEL GRANDJEAN Laboratoire de Chimie Structurale, Institut de Chimie, 2 rue Goethe, Strasbourg 67, France

(Reçu le 5 juillet 1965)

The crystal structure of magnesium selenite hexahydrate, MgSeO₃. $6H_2O$, has been determined and refined, with the use of three-dimensional F_o and $(F_o - F_c)$ Fourier and least-squares methods. The space group is R3. The dimensions of the hexagonal unit-cell are: a=b=8.944 Å, c=8.936 Å. The structure is built from octahedral $[Mg(H_2O)_6]^{2+}$ and pyramidal $[SeO_3]^{2-}$ ions; the distance Se-O is 1.69 Å and the interbond angle O-Se-O is 100° 41'.

Introduction

En 1950 est parue une étude cristallographique sur le sélénite de magnésium à six molécules d'eau montrant que ce composé était vraisemblablement isotype du sul-

fite de nickel à six molécules d'eau (Cavalca & Ferrari, 1950). Afin de compléter ces travaux et d'obtenir des données précises sur l'ion sélénite, la détermination de la structure cristalline de $MgSeO_3 . 6H_2O$ a été entreprise.

Données expérimentales

MgSeO₃. $6H_2O$ cristallise dans le système hexagonal. Les formes dominantes des cristaux sont $\{11\overline{2}0\}, \{10\overline{1}2\}$ et $\{10\overline{1}\overline{1}\}$.

Les paramètres cristallins déterminés par indexation précise d'un diffractogramme sont:

$$a = b = 8,944 \pm 0,008 \text{ Å}$$

$$c = 8,936 \pm 0,008 \text{ Å}$$

$$\gamma = 120^{\circ} \qquad (\lambda \text{ Cu } K\alpha = 1,5418 \text{ Å})$$

La densité mesurée est de 2,11; la densité calculée avec 3 unités $MgSeO_3$. $6H_2O$ par maille est égale à 2,09. Le groupe spatial est R3.

Les intensités des réflexions hkl avec l variant de 0 à 6 ont été enregistrées à l'aide d'un rétigraphe muni d'un dispositif integrateur (192 réflexions indépendantes). Ces intensités ont été mesurées à l'aide d'un microdensitomètre prèalablement étalonné. Les valeurs trouvées ont été corrigées des facteurs de Lorentz et de polarisation. L'absorption a été négligée. Les dimensions du cristal utilisé étaient toutes inférieures à 0,17 mm.

Fig. 1. Distances interatomiques et angles de valence.

Affinement de la structure

Compte tenu de l'isotypie probable de MgSeO₃. $6H_2O$ avec NiSO₃. $6H_2O$, un calcul de facteurs de structure a été réalisé avec les coordonnées et facteurs isotropes d'agitation thermique trouvés pour le sulfite de nickel à $6H_2O$ (Weiss, Grandjean & Wendling, 1964). Le facteur résiduel *R* correspondant a été trouvé égal à 0,19.

Cette valeur relativement faible du facteur R montre que la structure du sélénite de magnésium à $6H_2O$ est voisine de celle du sulfite de nickel à $6H_2O$.

Ces coordonnées et facteurs d'agitation thermique ont ensuite été affinés par moindres carrés en minimisant l'expression:

$$R_{2} = \Sigma \omega (K|F_{o}|^{2} - |F_{c}|^{2})^{2}$$
$$\omega = \frac{1}{a|F_{o}|^{2} + |F_{o}|^{3} + b|F_{o}|^{4}}$$

avec: a = 19,2 b = 0,013. (Cruickshank, 1952, 1961).

Tableau 1. Coordonnées atomiques, déviations standard et facteurs d'agitation thermique

	x	У	Z	σ	В
Mg	0	0	0		2,45 Å2
Se	0	0	0,5239	0,0007	1,56
0	0,0562	0,1895	0,4370	0,005	2,05
(H ₂ O) _I	0,1903	0,1933	0,8670	0,005	3,81
$(H_2O)_{II}$	0,1829	-0,0034	0,1384	0,005	3,00

 Tableau 2. Valeurs des facteurs de structures observés et calculés

·					<u>.</u>	<u> </u>	
h k l	F _{obs}	F _{calc}	degrés	h k 1 :	F _{obs} .	F _{calc}	^a degrés
030	65,7	61,3 :	- 34°23'	541	16,4	20,3	211040'
0 6 0	05,7	97,9	3°07'	351	44,6	44,8	184°36'
0 9 0	35,8	: 30,6 :	- 12050(051	36,4	39,1	225°08'
110	98,5	134,7	4001	3 5 1	35,2	38,6	189011
140	. 97,8	121,1	- 1º13'	561	34,7	32,8	174°13'
170	32,4	36,5	- 8°31'	261	50,3	49,1 :	196°50'
2 2 0	46,1 :	43,1	39°46'	161	41,5	41,4	180°31'
250	105,1	74,9	- 0°0'8'	461	18,6	20,9	214°26'
3 3 0	57,7	58,6 :	40291	4 71	78,9	81,7	181°44'
360	38,1	36,5	6°23'	171	25,9	26,2 :	222°58'
410	: 115,8	: 100,1 :	9°12'	271	46,1	37,3	181°31'
440	43,1	43,4	- 5°34'	681	28,2	31,0	197°56'
520	74,8	51,1 :	- 20°53'	381	43,6	41,7	198°55'
550	54,9	43,6	30381	081	22,3	24,2	193°21'
710	40,6	31,7	- 80341	391	21,9	27,4	220°03'
630	38,5	33,8	- 9°28'	391	15,9	21,0	185°03'
	:	: :	:	291	16,1	21,9	210°42'
101	58,8	48,1	177024'	1 0 1	11,8	17,0	207°39'
401	47,9	43,1	232°54'	1 7 10 1	3,1	12,4	182°35'
701	24,7	25,0	179°35'	1 :	:	:	
2 1 1	: 153,6	: 154,8 :	198°59'		:	:	
511	39,5	58,2	221041'	202	101,9	123,7	18°23'
811	: 38,7	32,6	198°29'	502	78,1	67,0	15°26'
021	69,8	66,1	177°35'	802	45,2	39,2	19°26'
321	: 73,4	71,2	202°11'	012	123,3	127,8	- 0°21'
621	31,1	32,7	175°20'	3 1 2	75,5	71,1	410571
231	12,6	15,6	223012'	612	30,7	30,9	19°50'
1 3 1	69,2	85,1	186°45'	912	10,2	25,7:	9°59'
431	17,6	20,7	189°54'	1 2 2	54,3	40,4	560271
731	30,3	28,6	181052	4 2 2	87,1	77,2:	110571
141	20,1	. 11,1	33°20'	7 2 2	20,7	18,8	14°30'
241	44,1	43,6	173°33'	I 3 2	128,7	143,1	60081
1				2 3 2	80,4	73,2	13°51'

hkl	F _{obs} .	Fcalc	adegrés	h	k	1.	Fobs.	Fcalc	ªdegrés
532	47,4	45,9	11°01'	ε	2	3	14,4	18,3	206°03'
342	115,8	130,4	12°37'	c	3	3	36,7	32,6	- 76°50'
0 4 2	63,7	56,6	70201	3	3	3	13,7	17,7	243011'
342	96,3	95,1	20301	6	3	3	21,4	21,0	218 56
642	37,7	32,1	230161	2	4	3	54,0	53,8	- 28°59'
2 5 2	80,4	77,1	7°11'	נ	4	3	49,8	58,1	195°41'
152	73,2	71,1	6 . 54. 1	i	4	3	13,6	14,7	234051
452	50,5	45,4	15°53'	Įι	5	3	51,6	€0,0	194043'
4 02	61,5	61,0	4011'	1	5	3	49,1	47,0	218°18'
162	60,1	60,1	23032'	:	5	3	25,2	28,2	182°46'
262	38,2	36,8	80371		55	3	42,4	36,5	208°44'
672	66,1	64,1	60101	1	56	3	31,7	33,0	202°23'
372	43.4	37,5	22°30'		3 (3	: 58,1	59,1	196°38'
072	52,9	50,2	200481	:	3 G	3	27,8	22,7	215°43'
372	28,8	24,2	18046'	1	57	3	: 29,2	34,9	183°22'
582	41,9	45,2	30371		27	3	44,8	40,0	221032
282	70,3	64,9	21°23'	:	L 7	3	20,8	22,7	212°17'
182	19,0	16,5	16004'	:	78	3	15,4	20,2	229°55'
792	64,9	54,4	13°56'	1	ī 8	3	29,4	33,3	214°03'
492	37,2	32,5	16°57'		8]	3	18,6	22,6	2340571
I 9 2	52,2	42,4	90441		28	3	13,3	10,5	234°13'
5 10 2	30,9	25,7	11°38'		5 9	3	11,6	16,6	226°56'
3 10 2	49,5	38,4	10°33'		39	3	20,3	23,9	228°03'
	:	:			9	3	13,1	15,9	222050'
303	72,2	: 65,4	237°12'		ē 10) 3	17,8	18,9	223°C8'
603	47,1	49,1	196°27'	1	5 10	3	25,3	23,4	213°13'
903	26,0	26,9	217°34'	1	2 10) 3	8,7	13,3	202°10'
113	94,4	85,8	199°26'				:	:	
413	76,0	75,4	213009'		1 0	4	38,2	29,2	16°22'
713	20,9	23,7	227940'		4 0	4	70,8	67,4	31°15'
I 2 3	23,1	27,8	230°41		70	4	40,1	36,8	30°02'
2 2 3	79,1	73,4	2220271		2 1	4	138,6	145,4	19°22'
523	18,5	18,8	244°28'		51	4	29,3	34,9	56°17'

h k l	Fobs.	F _{calc}	adegrés	h k l	F _{obs} .	Fcalc	"degrés
914	40.0	35.5	22°30'	015	28.2	32.5	256°04'
024	81,9	85,7	289351	125	38.4	43,7	- 68°03'
324	95,1		210341	425	43,9	42,3	227015'
624	43,5	42,7	376451	1 3 5	71,1	ιε,2	2350471
234	98,3		20011	235	2Ľ,7	20,7	246°35'
134	82,8	27,3	25 . 57	535	28,8	27,9	2419231
434	48,3	: 50,7	206001	345	ε3,1	52,7	219°38'
734	30,3	27,7	26°01'	045	51,3	40,3	244943'
144 I	: 66,4	66,1	5C°41'	345	30,1	30,5	212°56'
544	20,2	35,2	37°16'	255	29,3	41,4	243°33'
244	: 47,ε	47,0	894.7	155	28,6	\$1,8	221024
354	67,8	66,9	25°52'	4 5 5	14,2	16,9	254°56'
054	18,3	25,1	(2947'	Ĩ65	41,1	: 44,3	224°03'
354	46,1	44,7	Ĭč°11'	2 6 5	13,2	16,0	261048
564	29,3	27,0	100491	៥ 7 5	25,2	29,0	225°61'
254	ΰ 4 ,7	€2,8	289461	375	18,2	20,3	269°10'
164	37,7	37,7	20°04*	675	24,1	: 29,3	230°01'
464	30,0	29,9	310444	585	17,6	15,9	2400571
Ģ 74	ε 63,3	C2,?	10?51'	285	: 38,7	37,0	2109491
Ĩ74	46,9	42,0	209441		:		:
274	: 44,6	: 37,4	250251	3 0 5	167,9	: 64,3	: 33°53'
084	45,0	41,6	100051	000	39,0	39,0	330471
384	53,5	55,1	21041	115	: 01,0	75,6	220291
034	34,2	37,5	34°26'	416	59,9	61,8	32°46'
594	41,0	38,9	209441	I 2 5	50,5	45,8	570591
594	28,0	28,9	37°28'	2 2 5	20,7	83,2	26°55'
294	41,9	39,4	26°41'	380	65,7	63,8	56°20'
7 10 4	29,5	30,2	36°57'	3 3 6	23,9	25,0	60°27'
1 10 4	19,3	21,4	+1°43'	248	40,4	45,2.	85°23'
		:		146.	44,9	47,3	340211
205	51,3	48,9	231046'	456	38,6	43,5	34°26'
505	44,7	46,3	215°34'	300	46,9	45,3	37°20'
015	47,5	44,?	2170491	I 5 9	54,0	55,7	43°21'
315	37,6	39,3	239°54'	330	38,9	41,1	28°56'
				1	:	<u>.</u>	:

Tableau 2 (suite)

Les coordonnées atomiques se sont stabilisées après 8 cycles d'affinement successifs.

Les valeurs trouvées pour les facteurs d'agitation thermique à l'issue de cet affinement tridimensionel ont été vérifiées et précisées à l'aide de sections de la fonction différence au niveau de chaque type d'atome.

En tenant compte de toutes les réflexions enregistrées, la valeur finale du facteur R est égale à 0,096.

Le Tableau 1 donne les valeurs des coordonnées atomiques et des facteurs d'agitation thermique ainsi que les déviations standard moyennes calculées à l'aide des relations de Cruickshank.

Le Tableau 2 donne les valeurs des facteurs de structure observés F_o et calculés F_c ainsi que les phases calculées α_{hkl} .

Description de la structure

La Fig.1 représente la succession de deux motifs élémentaires $[Mg(H_2O)_6]^{2+}$ et $[SeO_3]^{2-}$ sur l'axe ternaire avec les distances interatomiques et les angles de valence. Le magnésium est situé en position particulière (*a*) du groupe *R*3; il est entouré octaédriquement par les six molécules d'eau. Sur l'axe ternaire et au-dessus de cet octaèdre le sélénium forme avec les atomes d'oxygène une pyramide triangulaire.

Les Tableaux 3 et 4 donnent les principales distances interatomiques et les angles de valence.

L'ion sélénite est pyramidal; la valeur trouvée pour la distance Se-O est de 1,69 Å et pour l'angle O-Se-O de 100°41′. Les distances O- $(H_2O)_{II}=2,70$ Å, O- $(H_2O)_{II}=2,67$ Å et O- $(H_2O)_{II}=2,72$ Å sont caractéristiques de liaisons hydrogène. Sur la Fig.2, représentant une projection de la structure suivant [001], deux

Tableau	3.	Distance.	S	interatomiques
e	t d	éviations	si	tandard -

Distances		σ
$Mg - (H_2O)_I$	2,08 Å	0,010 Å
$Mg - (H_2O)_{II}$	2,06	0,010
Mg ——O	4,18	0,010
SeO	1,69	0,010
00	2,61	0,012
O(H ₂ O) ₁₁	2,70	0.012
0(H ₂ O) ₁	2.67	0.012
$O_{}(H_2O)_{II}$	2,72	0,012
$(H_2O)_1 - (H_2O)_1$	2.97	0.012
$(H_2O)_{11} - (H_2O)_{11}$	2.85	0.012
$(H_2O)_1 - (H_2O)_{11}$	2,97	0.012
$(H_2O)_{11} - (H_2O)_1$	4.14	0.012
$(H_2O)_1 - (H_2O)_{11}$	2.86	0.012
$(H_2O)_1 - (H_2O)_{11}$	3,76	0.012

Tableau 4. Angles de valence

Angles		σ
0	100°41′	30′
$(H_2O)_{II} - Mg - (H_2O)_{II}$	87 46	30
$(H_2O)_I - Mg - (H_2O)_I$	90 49	30
Mg — Mg — Mg	82 46	30
$(H_2O)_I - (H_2O)_{II} - (H_2O)_I$	60 28	30

Fig. 2. Projection de la structure suivant [001].

de ces liaisons hydrogène sont représentées par des traits en pointillé; la troisième est visible sur la Fig. 1.

Nous remercions Monsieur le Professeur Lacroute, Directeur du Centre de Calcul de la Faculté des Sciences de Strasbourg, d'avoir mis à notre disposition l'ordinateur Bull Γ ET et Monsieur R. Strosser pour l'aide apportée dans la réalisation des programmes. Références

CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
CRUICKSHANK, D. W. J. (1952). Acta Cryst. 5, 511.
CRUICKSHANK, D. W. J. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis.
FERRARI, A. & CAVALCA, L. (1950). Gazz. chim. Ital. 80, 151.
WEISS, R., GRANDJEAN, D. & WENDLING, J. P. (1964). Bull. Soc. Chim. Fr. p. 3152.

Acta Cryst. (1966). 20, 566

Crystalline Phases in the System In–In₂S₃

BY W.J. DUFFIN AND J.H.C. HOGG Department of Physics, The University, Hull, England

(Received 22 July 1965)

Phases existing at room temperature in the In - In₂S₃ system are established as InS and In₆S₇ and their properties related to previous work. Crystallographic data are presented and InS is confirmed as orthorhombic with a=3.944, b=4.447, c=10.648 Å, space group *Pmnn*, Z=4. In₆S₇ is found to be monoclinic with a=9.090, b=3.887, c=17.705 Å, $\beta=108.20^{\circ}$, space group $P2_1/m$, Z=2. Evidence for the existence of crystalline In₂S is also examined.

Introduction

While the structures of α - and β -In₂S₃ have been well established by Hahn & Klingler (1949) and by Steigmann, Sutherland & Goodyear (1965), considerable confusion exists over the other crystalline phases in the In-In₂S₃ system which are stable at room temperature. In a detailed investigation of the phase diagram, Stubbs, Schufle, Thompson & Duncan (1952) reported the existence of InS and, with some uncertainty in composition, In₅S₆: no other phases were found, apart from In₃S₄ which is stable only above 370 °C. X-ray